MINIMAL FUNCTIONS WITH UNBOUNDED INTEGRAL

BY RUSSELL A. JOHNSON

ABSTRACT

We prove theorems which imply the following results. (1) "Most" almost periodic functions b(t) with unbounded integral oscillate in a strong sense. (2) If B is a continuous function on a minimal flow (Ω, R) , then either the time averages $(1/t) \int_0^t B(\omega \cdot s) ds$ all converge, or they diverge on a residual set.

§1. Introduction

Let b be an almost periodic (a.p.) function with mean value zero such that $g(t) = \int_0^t b(s) ds$ is unbounded. One might expect that g(t) would oscillate in the sense that $\overline{\lim_{t\to\infty}} g(t) = \infty$, $\underline{\lim_{t\to\infty}} g(t) = -\infty$. This is not the case for all a.p. functions b, as the example $b(t) = \sum_{n=1}^{\infty} (1/n^2) \sin n^2 t$ shows. One can even have $\lim_{t\to\infty} g(t) = \infty$ ([2]).

However, we will show that almost all a.p. functions (with mean value zero and unbounded integral) do have an oscillatory integral: for fixed b, there is a residual subset Ω_0 of the hull (2.1) Ω of b such that, if $b_0 \in \Omega_0$ and $g_0(t) = \int_0^t b_0(s) ds$, then

$$\overline{\lim_{t\to\infty}} g_0(t) = \infty, \quad \underline{\lim_{t\to\infty}} g_0(t) = -\infty, \quad \overline{\lim_{t\to\infty}} g_0(t) = \infty, \quad \underline{\lim_{t\to\infty}} g_0(t) = -\infty,$$

Moreover, the oscillation is strong in the sense that

$$\lim_{n\to\infty}\frac{1}{2n}\ m\{t\in[-n,n]\ |\ g_0(t)\in I\}=0$$

for every compact $I \subset \mathbf{R}$ (m = Lebesgue measure on \mathbf{R}).

In 3, we will actually prove these statements under weaker assumptions on b,

Received January 27, 1978

namely that (i) the hull Ω of b is minimal (2.2); (ii) for some $b_1 \in \Omega$, and some sequence (t_n) such that $|t_n| \to \infty$, one has $(1/t_n) \int_0^t b_1(s) ds = 0$; (iii) for some $b_2 \in \Omega$, $\int_0^t b_2(s) ds$ is unbounded. Techniques developed by Sacker and Sell ([11], [12]) for the study of linear skew-product flows (2.2) will be of great importance in the proofs. We will also use an elegant method of Furstenberg, Keynes, and Shapiro ([5], lemma 2.2) to prove a preliminary result (2.7), which reduces to Bohr's theorem ([4], theorem 5.2) when b is a.p.

In §4, the results of §3 are applied to an arbitrary continuous function B defined on a compact metric space Ω , where Ω is the phase space of a minimal flow (Ω, \mathbf{R}) . We show that either (i) the time averages $(1/t) \int_0^t B(\omega \cdot s) ds$ converge as $t \to \pm \infty$ for all $\omega \in \Omega$, or (ii) for a residual set of $\omega \in \Omega$, the time averages diverge, both as $t \to \infty$ and as $t \to -\infty$.

§2. Preliminaries

2.1. DEFINITIONS. Let $b: \mathbb{R} \to \mathbb{R}$ be a uniformly bounded, uniformly continuous function. For $t \in \mathbb{R}$, let b_t be the *t*-translate of $b: b_t(s) = b(t+s)$ ($s \in \mathbb{R}$). Give $\mathscr{C}(\mathbb{R}, \mathbb{R}) = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$ the topology of uniform convergence on compacta, and let $\Omega = \text{cls}\{b_t \mid t \in \mathbb{R}\} \subset \mathscr{C}(\mathbb{R}, \mathbb{R})$. Then Ω is compact metric. The map $\Phi: \Omega \times \mathbb{R} \to \Omega: (\omega, t) \to \omega_t$ defines a flow ([3]) on Ω ; we will denote this flow by (Ω, \mathbb{R}) , and write $\omega \cdot t$ for $\Phi(\omega, t)$.

Now let $\omega_0 \equiv b \in \Omega$. Define $B: \Omega \to \mathbf{R}$: $B(\omega) = \omega(0)$. Observe that $B(\omega_0 \cdot t) = \omega_{0,t}(0) = \omega_0(t) = b(t)$. Hence B "extends b from $\{\omega_0 \cdot t \mid t \in \mathbf{R}\}$ to Ω ". Clearly $B(\omega \cdot t) = \omega(t)$ ($\omega \in \Omega$). In what follows, we will refer to $B(\omega \cdot t)$ instead of $\omega(t)$; the reason is that, instead of viewing (Ω, \mathbf{R}) as the hull of some function b, we prefer to think of it as an abstract flow with distinguished continuous function B.

2.2. DEFINITION. A flow (Y, \mathbf{R}) with Y compact Hausdorff is minimal iff every orbit $\{y \cdot t \mid t \in \mathbf{R}\}$ is dense in Y. Equivalently, (Y, \mathbf{R}) is minimal iff the only proper closed invariant subset of Y is the empty set.

2.3. DEFINITIONS. Let (Y, \mathbf{R}) be a flow with Y compact Hausdorff. A flow $(Y \times \mathbf{R}^n, \mathbf{R})$ is a linear skew-product flow (or LSPF) if, for each $(y, x) \in Y \times \mathbf{R}^n$ and each $t \in \mathbf{R}$, one has $(y, x) \cdot t = (y \cdot t, x(t))$, where the map $x \to x(t)$: $\{y\} \times \mathbf{R}^n \to \{y \cdot t\} \times \mathbf{R}^n$ is linear. Suppose (Y, \mathbf{R}) is minimal. Say that $\lambda \in \mathbf{R}$ is in the spectrum of $(Y \times \mathbf{R}^n, \mathbf{R})$ iff there exists $(y, x) \in Y \times \mathbf{R}^n$ such that $e^{-\lambda t}x(t)$ is bounded $(-\infty < t < \infty)$. See ([11], [12].)

2.4. THEOREM. Let $(Y \times \mathbb{R}^n, \mathbb{R})$ be an LSPF with (Y, \mathbb{R}) minimal, and suppose

MINIMAL FUNCTIONS

 β is any number of the form $\lim_{t\to\infty} (1/t_n) \ln ||x(t_n)||$, where $|t_n| \to \infty$ and $\{(y \cdot t, x(t)) | t \in \mathbb{R}\}$ is some orbit of the LSPF. Then β is in the spectrum of the LSPF.

Theorem 2.4 is an immediate corollary of ([12], theorem 4, p. 185). Let (Ω, \mathbf{R}) be as in 2.1. In 2.5, we define a flow (Σ, \mathbf{R}) which will be useful later.

2.5. DEFINITIONS. Consider the ordinary differential equations

$$E_{\omega}: \dot{x} = \begin{pmatrix} 0 & 0 \\ B(\omega \cdot t) & 0 \end{pmatrix} x \qquad (x \in \mathbf{R}^2, \, \omega \in \Omega).$$

Define a flow on $\Omega \times \mathbf{R}^2$ as follows: $(\omega, x_0) \cdot t = (\omega \cdot t, x(t))$, where x(t) is the solution to equation E_{ω} satisfying $x(0) = x_0$. The flow $(\Omega \times \mathbf{R}^2, \mathbf{R})$ is an LSPF. This LSPF induces a flow $(\Omega \times S^1, \mathbf{R})$, where $S^1 \subset \mathbf{R}^2$ is the unit circle, as follows: $(\omega, x_0) \cdot t = (\omega \cdot t, x(t)/||x(t)||)$ if $||x_0|| = 1$, where again x(t) solves E_{ω} with $x(0) = x_0$.

We may describe the flow $(\Omega \times S^1, \mathbf{R})$ more usefully as follows. Let θ be the usual polar coordinate on S^1 , with $-\pi \leq \theta < \pi$. Given $(\omega_0, \theta_0) \in \Omega \times S^1$, define $\theta(t)$ by $(\omega_0, \theta_0) \cdot t \equiv (\omega_0 \cdot t, \theta(t))$. By solving equation E_{ω_0} , we find (a) $\theta(t) = \tan^{-1}(\theta_0 + \int_0^t B(\omega_0 \cdot s) ds)$ if $\theta_0 \neq \pm \pi/2$; (b) $\theta(t) \equiv \pm \pi/2$ if $\theta_0 = \pm \pi/2$. Hence the set $\Sigma = \Omega \times [-\pi/2, \pi/2] \subset \Omega \times S^1$ is invariant. The flow (Σ, \mathbf{R}) is the promised flow. Note that, if $\theta_0 \neq \pm \pi/2$ and if $\int_0^t B(\omega_0 \cdot s) \rightarrow +\infty(-\infty)$, then $(\omega_0, \theta_0) \cdot t \rightarrow \Omega \times \{\pi/2\} (\Omega \times \{-\pi/2\})$.

2.6. DEFINITIONS. Let $b: \mathbf{R} \to \mathbf{R}$ be uniformly bounded and uniformly continuous with hull Ω . Say b is minimal if (Ω, \mathbf{R}) is minimal.

2.7. LEMMA. Let $b: \mathbf{R} \to \mathbf{R}$ be minimal, and suppose $\int_0^t b(s) ds$ is bounded as $t \to \infty$ or as $t \to -\infty$. Then there is a continuous $G: \Omega \to \mathbf{R}$ such that $G(\omega \cdot t) = G(\omega) = \int_0^t B(\omega \cdot s) ds$ ($\omega \in \Omega$; B is constructed as in 2.1).

PROOF ([5], lemma 2.2 and [6] §14.11). Define a flow on $\Omega \times \mathbf{R}$ as follows: $(\omega, u) \cdot t = (\omega \cdot t, u + \int_0^t B(\omega \cdot s) ds)$. Also define $T_s \colon \Omega \times \mathbf{R} \to \Omega \times \mathbf{R} \colon T_s(\omega, u) = (\omega, u + s)$. Let $\omega_0 \equiv b \in \Omega$, and define $K_1 \subset \Omega \times \mathbf{R}$ to be (a) the ω -limit set ([9]) of the orbit $\{(\omega_0, 0) \cdot t \mid t \in \mathbf{R}\}$ if $g(t) = \int_0^t B(\omega_0 \cdot s) ds$ is bounded as $t \to \infty$; (b) the α -limit set of $\{(\omega_0, 0) \cdot t \mid t \in \mathbf{R}\}$ if g(t) is bounded as $t \to -\infty$. Then K_1 is compact and invariant, hence contains a nonempty minimal set K ([3]). Since Ω is minimal, the projection of K to Ω is equal to Ω . Suppose that, for some $\omega \in \Omega$, one has (ω, u_1) and $(\omega, u_1 + \delta) \in K$. By minimality of K, one has $T_\delta(K) = K$. Hence $T_{n\delta}(K) = K$ for all integers n; hence $\delta = 0$. It follows that K covers each point of Ω exactly once. Define $G(\omega)$ to be the unique point of $K \cap \{\omega\} \times \mathbb{R}$; then G satisfies the conditions of 2.7.

2.8. REMARK. If b is almost periodic, then 2.7 is Bohr's theorem ([4], theorem 5.2), since in that case (Ω, \mathbf{R}) is an almost-periodic minimal set ([3]), and $\int_0^t b(s)ds = \int_0^t B(\omega_0 \cdot s)ds = G(\omega_0 \cdot t) - G(\omega_0)$; the last expression is an almost-periodic function of t.

2.9. DEFINITIONS. Let X be compact metric, and let 2^x be the (compact) space of all closed subsets of X with the Hausdorff metric ([1], def. 7.7). If Y is a topological space and $\varphi: Y \to 2^x$ is a map, say that φ is upper (lower) semi-continuous iff for each V open (closed) in X, $\{y \in Y \mid \varphi(y) \cap V \neq \emptyset\}$ is open (closed) in Y.

2.10. THEOREM. Let X and Y be compact metric, and let $\varphi: Y \to X$ be an upper (lower) semi-continuous map. Then the set of continuity points of φ is residual in Y.

For a proof of 2.10, see ([1], theorem 7.10) (the proof applies also to upper semi-continuous maps).

§3. Oscillation properties

3.1. NOTATION. Let $b: \mathbb{R} \to \mathbb{R}$ be a minimal function with hull (Ω, \mathbb{R}) . Let $B: \Omega \to \mathbb{R}$ and (Σ, \mathbb{R}) be as in 2.1 and 2.5, respectively. We sometimes write $g_{\omega}(t)$ for $\int_{0}^{t} B(\omega \cdot s) ds$ ($\omega \in \Omega$).

3.2. Assumptions. (1) There exists $\omega_1 \in \Omega$ and a sequence (t_n) with $|t_n| \to \infty$ such that $(1/t_n) \int_0^{t_n} B(\omega_1 \cdot s) ds \to 0$ as $n \to \infty$.

(2) There exists $\omega_2 \in \Omega$ such that $\int_0^t B(\omega_2 \cdot s) ds$ is unbounded.

3.3. THEOREM. Let m be Lebesgue measure on **R** (with m[0, 1] = 1). Let

$$\Omega_{1} = \left\{ \omega \in \Omega \mid \lim_{n \to \infty} \frac{1}{2n} m\{t \in [-n, n] \mid g_{\omega}(t) \in I\} \right\} = 0$$

for every compact $I \subset R$. Then Ω_1 is residual in Ω .

PROOF. Let

$$A_{j,k,N} = \left\{ \omega \in \Omega \left| \frac{1}{2n} m\{t \in [-n,n] \mid g_{\omega}(t) \in (-k,k)\} \ge 1/j \text{ for } n \ge N \right\}.$$

If $\omega_p \to \omega$, then $g_{\omega_p}(t) \to g_{\omega}(t)$ uniformly on compact subsets of R; hence $\operatorname{cls} A_{j,k,N} \subset A_{j,k+1,N}$. It follows that $\Omega \sim \Omega_1 = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \operatorname{cls} A_{j,k,N}$.

MINIMAL FUNCTIONS

If the conclusion of 3.3 is false, then some set $A_{j,k,N}$ contains an open set $V \subset \Omega$ (*j*, *k*, *N* are now fixed). Since (Ω, R) is minimal, there exist times t_1, \dots, t_p such that $\Omega = V \cdot t_1 \cup \dots \cup V \cdot t_p$ (here $V \cdot t \equiv \{\omega \cdot t \mid \omega \in V\}$). It follows easily that, for some k_0 , one has

$$\frac{1}{2n} m\{t \in [-n,n] \mid g_{\omega}(t) \in (-k_0,k_0)\} \ge 1/j \quad \text{for all } n \ge N \text{ and all } \omega \in \Omega.$$

Now consider $g_{\omega_2}(t)$, where ω_2 is given in 3.2(2). Assume $\lim_{t\to\infty} g_{\omega_2}(t) = \infty$ (it will be clear that the other possibilities may be handled similarly). Pick times $T_1 < T_2 < \cdots < T_{2j}$ such that $g_{\omega_2}(T_i) = 2ik_0$ $(1 \le i \le 2j)$. Note that

$$g_{\omega_2 \cdot T_i}(t) = \int_0^t B(\omega_2 \cdot (T_i + s)) ds = \int_{T_i}^{T_i + t} B(\omega_2 \cdot s) ds = g_{\omega_2}(T_i + t) - g_{\omega_2}(T_i).$$

For $n \ge N$, one has

$$\frac{1}{2n} m\{t \in [-n, n] \mid g_{\omega_2 \cdot T_i}(t) \in (-k_0, k_0)\} \ge 1/j;$$

hence, if $n \ge N$, then $g_{\omega_2}(s)$ is in the open interval $((2i-1)k_0, (2i+1)k_0)$ for a set $S_i \subset [T_i - n, T_i + n]$ satisfying $(1/2n)m(S_i) \ge 1/j$.

Now choose $n \ge \max(N, 2j \cdot T_{2j})$. Then $(1/2n)m(S_i \cap [-n, n]) \ge 1/2j$ $(1 \le i \le 2j)$. Since

$$[-n,n] \supset \bigcup_{i=1}^{2j} (S_i \cap [-n,n]) \cup \{s \in [-n,n] \mid g_{\omega_2}(s) \in (-k_0,k_0)\},\$$

and since the sets on the right hand side are pairwise disjoint, we obtain $1 = (1/2n)m[-n, n] \ge (2j)(1/2j) + 1/j > 1$, a contradiction.

3.4. DEFINITION. Let $\Omega_2 = \{\omega \in \Omega \mid \overline{\lim}_{t \to \infty} g_\omega(t) = \infty, \quad \underline{\lim}_{t \to \infty} g_\omega(t) = -\infty, \\ \overline{\lim}_{t \to -\infty} g_\omega(t) = \infty, \quad \underline{\lim}_{t \to \infty} g_\omega(t) = -\infty \}.$

3.5. LEMMA ([12], p. 204, prob. 7). (1) There exists $\omega_3 \in \Omega$ and a real M such that $g_{\omega_3}(t) \leq M$ ($-\infty < t < \infty$).

(2) There exists $\omega_4 \in \Omega$ and a real M such that $g_{\omega_4}(t) \ge M$ $(-\infty < t < \infty)$.

PROOF. Consider the linear skew-product flow (2.3) $(\Omega \times \mathbf{R}, \mathbf{R})$ defined as follows: $(\omega, x) \cdot t = (\omega \cdot t, x_{\omega}(t))$, where $x_{\omega}(t) = x \cdot \exp[\int_0^t B(\omega \cdot s) ds]$. By 2.4, any number of the form $\lim_{n \to \infty} (1/t_n) \ln |x_{\omega}(t_n)|$ is in the spectrum (2.2) of $(\Omega \times \mathbf{R}, \mathbf{R})$, where $|1/t_n| \to \infty$. By 3.2(1), zero is in the spectrum of $(\Omega \times \mathbf{R}, \mathbf{R})$ so there exists $\omega_3 \in \Omega$ such that $\exp[\int_0^t B(\omega_3 \cdot s) ds]$ is bounded. This proves (1). To prove (2), replace B by -B in the above argument. Consider the flow (Σ, R) of 2.5; recall $\Sigma = \Omega \times [-\pi/2, \pi/2]$. Let $K_n = \Omega \times [-\pi/2 + 1/n, \pi/2] \subset \Sigma$ $(n = 1, 2, \cdots)$. Let

$$V_n = \{(\omega, \theta) \in \Sigma \mid (\omega, \theta) \cdot t \in K_n \text{ for all } t \ge 0\}$$
$$= \left\{ (\omega, \theta) \in \Sigma \mid \theta + \int_0^t B(\omega \cdot s) \ge \tan^{-1}(-\pi/2 + 1/n) \text{ for all } t \ge 0 \right\}.$$

Then V_n is compact, and it is positively invariant (i.e., $(\omega, \theta) \cdot t \in V_n$ whenever $(\omega, \theta) \in V_n$ and $t \ge 0$). Note $\Omega \times \{\pi/2\} \subset V_n$ for all $n \ge 1$.

3.6. LEMMA. Let

$$W_n = \{\omega \in \Omega \mid \text{there exists } \theta, -\pi/2 < \theta < \pi/2, \text{ with } (\omega, \theta) \in V_n\}$$

Then W_n is of first category in Ω .

PROOF. Let $Z \equiv 2^{[-\pi/2, \pi/2]}$ be the set of closed subsets of $[-\pi/2, \pi/2]$ with the Hausdorff metric (see 2.9). For fixed *n*, define $\varphi : \Omega \to Z : \omega \to V_n \cap (\{\omega\} \times [-\pi/2, \pi/2])$. Then φ is lower semi-continuous (2.9), hence has a residual set of continuity points (2.10). Let $\bar{\omega}$ be a continuity point of φ . To prove 3.6, it is sufficient to prove that $\bar{\omega} \notin W_n$.

So, suppose $\bar{\omega} \in W_n$, and let $(\bar{\omega}, \theta_0) \in V_n$, $-\pi/2 < \theta_0 < \pi/2$. By continuity at $\bar{\omega}$, there exists a neighborhood \mathcal{O} of $\bar{\omega}$ such that, for each $\omega \in \mathcal{O}$, there exists $\theta_\omega \in (-\pi/2, \pi/2)$ with $(\omega, \theta_\omega) \in V_n$. Since (Ω, \mathbb{R}) is minimal, there exist finitely many positive times t_1, \dots, t_n such that $\mathcal{O} \cdot t_1 \cup \dots \cup \mathcal{O} \cdot t_n = \Omega$. Since V_n is positively invariant, it follows that, for every $\omega \in \Omega$, there exists $\theta_\omega \in (-\pi/2, \pi/2)$ such that $(\omega, \theta_\omega) \in V_n$.

Now, from the definition of (Σ, \mathbf{R}) the last statement implies that, for each ω , there exists $M_{\omega} \in \mathbf{R}$ such that $\int_0^t B(\omega_3 \cdot s) ds \ge M_{\omega}$ for all $t \ge 0$. But, by 3.5(1), there exists ω_3 and M such that $\int_0^t B(\omega_3 \cdot s) ds \le M$ $(-\infty < t < \infty)$. By 2.7, $\int_0^t B(\omega \cdot s) ds$ is bounded on $-\infty < t < \infty$ for all ω , contradicting 3.2(3). This completes the proof of 3.6.

3.7. THEOREM. Let Ω_2 be as in 3.4. Then Ω_2 is residual in Ω .

PROOF. First let $W_a = \bigcup_{n=1}^{\infty} W_n$, where W_n is as in 3.6. Then $\Omega \sim W_a = \{\omega \in \Omega \mid \underline{\lim}_{t \to \infty} g_{\omega}(t) = -\infty\}$, and by 3.6, $\Omega \sim W_a$ is residual in Ω .

Replace K_n by $\Omega \times [-\pi/2, \pi/2 - 1/n]$ $(n = 1, 2, \cdots)$ in the proof of 3.6. One concludes that $\{\omega \in \Omega \mid \overline{\lim_{t \to \infty}} g_{\omega}(t) = \infty\}$ is residual in Ω . Replacing " $t \ge 0$ " by " $t \le 0$ " in the definition of V_n , and proceeding as above, one also shows that $\{\omega \in \Omega \mid \overline{\lim_{t \to -\infty}} g_{\omega}(t) = \infty$ and $\underline{\lim_{t \to -\infty}} g_{\omega}(t) = -\infty\}$ is residual in Ω . This completes the proof.

Combining 3.3 and 3.7, we obtain

3.8. THEOREM. $\Omega_0 = \Omega_1 \cap \Omega_2$ is residual in Ω .

3.9. REMARKS. (1) If $b: \mathbf{R} \to \mathbf{R}$ is an almost periodic function with mean value zero and unbounded integral, then 3.2(1) and 3.2(2) are satisfied. Also, the hull of b is minimal (in fact, minimal and almost periodic ([3])).

(2) In ([7]), it is shown (using an example of ([8])) that there exist almost periodic functions b with mean value zero and unbounded integral such that $\lim_{n\to\infty} (1/2n)m\{t \in [-n, n] \mid \int_0^t b(s) \in I\}$ exists and is positive for some compact I. On the other hand, it is also shown in [7] that there exist almost periodic functions b with mean value zero such that $\lim_{n\to\infty} (1/2n)m\{t \in [-n, n] \mid g_{\omega}(t) \in I\} = 0$ for all ω , I.

(3) Let Ω be compact metric, $T: \Omega \to \Omega$ a homeomorphism, and suppose the integer flow (Ω, T) is minimal. Let $B: \Omega \to \mathbf{R}$ be continuous. Define a homeomorphism \tilde{T} of $\Sigma = \Omega \times [-\pi/2, \pi/2]$ as follows: $\tilde{T}(\omega, \theta) = (T(\omega), \theta + B(\omega))$. For positive integers k, define $g_{\omega}(k) = \sum_{i=0}^{k-1} B(T^i(\omega))$; for negative k, define $g_{\omega}(k) = \sum_{i=0}^{k-1} B(T^{-i}(\omega))$. Then all methods used above apply with "k" in place of "t" and " $g_{\omega}(k)$ " in place of " $g_{\omega}(t)$ ". We conclude that one of the following holds: either (a) the sums $\sum_{i=0}^{k-1} B(T^{-i}(\omega))$ and $\sum_{i=0}^{k-1} B(T^{-i}(\omega))$ are bounded, uniformly in k and ω (2.7), or (b) there is a residual set $\Omega_0 \subset \Omega$ such that $\omega \in \Omega_0$ implies (i) $\lim_{n\to\infty} (1/2n) \operatorname{card} \{k \in [-n, n] \mid g_{\omega}(k) \in I\} = 0$ for all compact $I \subset \mathbf{R}$, and (ii) $g_{\omega}(k)$ oscillates in the sense of 3.4 (i.e., $\lim_{k\to\infty} g_{\omega}(k) = \infty$, etc.).

§4. Time averages

4.1. NOTATION. We retain the notation of 3.1. Let $E(\Omega)$ be the set of (Radon) probability measures on Ω which are ergodic ([9]) with respect to the flow (Ω, \mathbf{R}) .

The following is well-known (see, e.g., [10]).

4.2. THEOREM. Let $M(\Omega)$ be the compact convex set of (Radon) probability measures on Ω which are invariant with respect to (Ω, \mathbf{R}) . Then $M(\Omega)$ is the closed convex hull of $E(\Omega)$.

Let $B: \Omega \to \mathbf{R}$ be as in 3.1 (note that any continuous function B on Ω is "induced" by a function $b: \mathbf{R} \to \mathbf{R}$; simply define $b(t) \equiv B(\omega_0 \cdot t)$ for some $\omega_0 \in \Omega$).

R. A. JOHNSON

4.3. THEOREM. (1) Suppose that, for some fixed $b_0 \in \mathbf{R}$, $\int_{\Omega} B(\omega) d\mu(\omega) = b_0$ for all $\mu \in E(\Omega)$. Then

$$\lim_{t\to\pm\infty}\frac{1}{t}\int_0^t B(\omega\cdot s)ds=b_0 \quad \text{for all } \omega\in\Omega.$$

(2) Suppose $b_1 = \int_{\Omega} B(\omega) d\mu_1(\omega) \neq \int_{\Omega} B(\omega) d\mu_2(\omega) = b_2$ for $\mu_1, \mu_2 \in E(\Omega)$. Then

$$\overline{\lim_{t\to\infty}}\frac{1}{t}\int_0^t B(\omega\cdot s)ds\neq \lim_{t\to\infty}\frac{1}{t}\int_0^t B(\omega\cdot s)ds$$

and

$$\overline{\lim_{d\to\infty}} \frac{1}{t} \int_0^t B(\omega \cdot s) ds \neq \lim_{t\to\infty} \frac{1}{t} \int_0^t B(\omega \cdot s) ds$$

for a residual set of $\omega \in \Omega$.

PROOF. (1) We use the method of ([9], p. 494). Suppose there is a sequence (t_n) with $|t_n| \to \infty$ and a point $\omega_0 \in \Omega$ such that

$$\lim_{n\to\infty}\frac{1}{t_n}\int_0^{t_n}B(\omega_0\cdot s)ds\neq b_0.$$

We may choose a subsequence (r_n) of (t_n) such that

$$\lim_{n\to\infty}\frac{1}{r_n}\int_0^{r_n}F(\omega_0\cdot s)ds\equiv\bar{\mu}(F)$$

exists for all continuous functions $F: \Omega \to \mathbf{R}$; moreover, the map $F \to \bar{\mu}(F)$ defines (using the Riesz theorem) an *invariant* measure $\bar{\mu}$ on Ω (see [9], pp. 494-495). Then $\int_{\Omega} B(\omega) d\bar{\mu}(\omega) \neq b_0$. However, by 4.2 and our assumption on b, $\int_{\Omega} B(\omega) d\bar{\mu}(\omega)$ must equal b_0 . This contradiction proves (1).

(2) Consider the functions $B_1(\omega) = B(\omega) - b_1$ and $B_2(\omega) = B(\omega) - b_2$. Clearly 3.2(1) holds for B_1 and B_2 . If 3.2(2) did not hold for, say, B_1 , then 2.7 would imply that $\int_0^t B(\omega \cdot s) ds = b_1 t + G_1(\omega \cdot t) - G_1(\omega)$, where $G_1: \Omega \to \mathbb{R}$ is continuous. But the Birkhoff ergodic theorem ([9]) implies that, for μ_2 -a.a. ω ,

$$\lim_{|t|\to\infty}\frac{1}{t}\int_0^t B(\omega\cdot s)ds=b_2.$$

This contradicts the previous statement. So 3.2(1) and 3.2(2) hold for B_1 and B_2 .

Now apply 3.7 to B_1 and B_2 ; one obtains a residual $\Omega_3 \subset \Omega$ such that, if $\omega \in \Omega_3$, (i) there is a sequence $(t_n) \to \infty$ with $\int_0^{t_n} B_1(\omega \cdot s) ds = 0$ (which implies $\int_{0}^{t_{n}} B(\omega \cdot s) ds = b_{1} \cdot t_{n}$; (ii) there is a sequence $(t_{m}) \to \infty$ with $\int_{0}^{t_{m}} B(\omega \cdot s) ds = b_{2} \cdot t_{m}$. Also, there are analogous sequences $(t'_{n}) \to -\infty$, $(t'_{m}) \to -\infty$. Each $\omega \in \Omega_{3}$ satisfies the conditions of 4.3(2).

4.4. REMARKS. (1) Theorem 4.3 states that, if (Ω, \mathbf{R}) is minimal, and if some time average $(1/t) \int_0^t B(\omega_0 \cdot s) ds$ diverges as $t \to \infty$ (or as $t \to -\infty$), then the time averages diverge for a residual set of $\omega \in \Omega$.

(2) As in 3.9(3), we can replace integrals by sums if a minimal discrete flow (Ω, T) is given. We may interpret 4.3 as follows: if the Césaro sums $(1/k) \sum_{i=0}^{k-1} B(T^i(\omega))$ diverge at a single point, they diverge on a residual set; the same statement holds for $(1/k) \sum_{i=0}^{k-1} B(T^{-i}(\omega))$.

REFERENCES

1. G. Choquet, *Lectures on Analysis*, Vol. I, Mathematics Lecture Notes Series, Benjamin, New York, 1969.

2. C. Conley and R. K. Miller, Asymptotic stability without uniform stability: Almost periodic coefficients, J. Differential Equations 1 (1965), 333-336.

3. R. Ellis, Lectures on Topological Dynamics, Mathematics Lecture Notes Series, Benjamin, New York, 1969.

4. A. M. Fink, Almost Periodic Differential Equations, Lecture Note in Mathematics No. 377, Springer-Verlag, New York, 1974.

5. H. Furstenberg, H. Keynes and L. Shapiro, *Prime flows in topological dynamics*, Israel J. Math. 14 (1973), 26-38.

6. W. Gottschalk and G. Hedlund, *Topological Dynamics*, Amer. Math. Soc. Colloq., Vol. 36, Providence, R.I., 1955.

7. R. Johnson, Almost-periodic functions with unbounded integral, preprint.

8. R. Johnson, A measurable, non-continuous function on the 2-torus, preprint.

9. V. V. Nemytskii and V. V. Stepanov, *Qualitative Theory of Differential Equations*, Princeton University Press, Princeton, N.J., 1960.

10. R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Mathematical-Studies, American Book Co., New York, 1966.

11. R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Equations 15 (1974), 429-458.

12. G. Sell, Linear Differential Systems, Lecture Notes, University of Minnesota, 1975.

UNIVERSITY OF SOUTHERN CALIFORNIA UNIVERSITY PARK

LOS ANGELES, CALIF. 90007 USA