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MINIMAL FUNCTIONS WITH 
U N B O U N D E D  INTEGRAL 

BY 

RUSSELL A. JOHNSON 

A B S T R A C T  

We prove theorems which imply the following results. (1) "Mos t"  almost 
periodic functions b (t) with unbounded integral oscillate in a strong sense. (2) If 
B is a continuous function on a minimal flow (I"~,R), then either the time 
averages (1/t)f'oB(oJ. s)ds all converge, or they diverge on a residual set. 

01. Introduction 

Let b be an almost periodic (a.p.) function with mean value zero such that 

g(t)  = f'o b(s)ds is unbounded. One might expect that g(t)  would oscillate in the 

sense that l i m , ~ g ( t ) =  oo, l im,~| - o o  This is not the case for all a.p. 

functions b, as the example b(t) = E~.I (1/n2)sin n2t shows. One can even have 

l im,_~g(t )= oo ([2]). 

However,  we will show that almost all a.p. functions (with mean value zero 

and unbounded integral) do have an oscillatory integral: for fixed b, there is a 

residual subset f/o of the hull (2.1) f~ of b such that, if bog  rio and go(t)= 
f'o b6(s)ds, then 

l i m g o ( t ) = %  l imgo( t )=  -o% lim go( t )=% lim go(t)= -oo. 

Moreover,  the oscillation is strong in the sense that 

1 
li_.~= ~ m{t E [ -  n, n]lgo(t ) ~ I} = 0 

for every compact I C R (m = Lebesgue measure on R). 

In w we will actually prove these statements under weaker assumptions on b, 
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namely that (i) the hull f~ of b is minimal (2.2); (ii) for some bt E f~, and some 

sequence (t,) such that Jt, I--~oo, one has (1/t,)f'cbl(s)ds = 0 ;  (iii) for some 

b2 E f~, f'o b2(s)ds is unbounded.  Techniques developed by Sacker and Sell ([11], 

[12]) for the study of linear skew-product flows (2.2) will be of great importance 

in the proofs. We will also use an elegant method of Furstenberg, Keynes, and 

Shapiro ([5], lemma 2.2) to prove a preliminary result (2.7), which reduces to 

Bohr 's  theorem ([4], theorem 5.2) when b is a.p. 

In w the results of w are applied to an arbitrary continuous function B 

defined on a compact metric space ~,  where f~ is the phase space of a minimal 

flow (~,R) .  We show that either (i) the time averages (1/t)f'oB(to .s)ds 
converge as t --~ -+ oo for all to E f~, or (ii) for a residual set of to E f l ,  the time 

averages diverge, both as t--~ oo and as t ~ -  oo. 

02. Preliminaries 

2.1. DEFINITIONS. Let b: R--~ R be a uniformly bounded, uniformly continu- 

ous function. For t E R, let b, be the t-translate of b: b,(s) = b(t + s) (s E R). 

Give cs (R, R) = {f: R--* R I f is continuous} the topology of uniform convergence 

on compacta, and let l~ = cls{b, It  E R}C ~(R,R) .  Then 1) is compact metric. 

The map qb: 1) • R-~  f~ : (to, t)--~ to, defines a flow ([3]) on 1); we will denote this 

flow by (f~, R), and write to �9 t for qb(to, t). 

Now let too ---- b E ft. Define B : f~--~ R: B(to) = to(0). Observe that B(to0 �9 t) = 

to0.,(0) = too(t) = b(t). Hence B "extends b from {tOo. t It E R} to lq". Clearly 

B( to .  t ) =  to(t) (to E ~).  In what follows, we will refer to B( to . t )  instead of 

to(t); the reason is that, instead of viewing (I),R) as the hull of some function b, 

we prefer to think of it as an abstract flow with distinguished continuous 

function B. 

2.2. DEFINITION. A flOW (Y,R) with Y compact Hausdodt  is minimal iff 

every orbit {y �9 t I t E R} is dense in Y. Equivalently, (Y,R) is minimal iff the only 

proper  closed invariant subset of Y is the empty set. 

2.3. DEFINITIONS. Let (Y,R) be a flow with Y compact Hausdorff. A flow 

(Y x R", R) is a linear skew-product flow (or LSPF) if, for each (y, x) E Y • R" 

and each t E R ,  one has ( y , x ) . t = ( y . t , x ( t ) ) ,  where the map 

x --~ x(t) :  {y} • R" --* {y �9 t} x R" is linear. Suppose (Y, R) is minimal. Say that 

A E R is in the spectrum of (Y x R", R) iff there exists (y, x) ~ Y x R" such that 

e-~'x(t) is bounded ( - ~  < t < oo). See ([11], [12].) 

2.4. THEOREM. L e t ( Y •  (Y,R)minimal, andsuppose 
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fl is any number of the form l im,-~(1/ t , ) In l lx( t , ) l l ,  where It, I---*~ and 

{(y .  t, x( t ) ) l t  ~ R} is some orbit of the LSPF. Then [3 is in the spectrum o]: the 

LSPF. 

T h e o r e m  2.4 is an i m m e d i a t e  corol lary  of ([12], t h e o r e m  4, p. 185). 

Let  (12, R) be  as in 2.1. In 2.5, we define a flow (E, R) which will be  useful  later.  

2.5. DEFINrNONS. Cons ider  the ord inary  differential  equa t ions  

(0 00) E ~ : x =  B ( t o ' t )  x (x E R2, to ~ 12). 

Def ine  a flow on f i x  R 2 as follows: (to, xo)" t = (to. t ,x ( t ) ) ,  where  x ( t )  is the 

solution to equat ion  E~ satisfying x ( 0 ) =  x0. The  flow (1~ x R2, R) is an LSPF.  

This  LSPF induces a flow (1~ x S ~, R ) ,  where  S1C R 2 is the unit circle, as follows: 

(to, Xo) . t - - ( to  . t , x ( t ) / ] l x ( t ) l [ ) i f  IlXoll = 1, where  again x ( t )  solves E,o with 

x ( 0 )  = Xo. 

We may  descr ibe  the flow (12 • S ' ,  R) more  usefully as follows. Let  0 be  the 

usual polar  coord ina te  on S 1, with - 7r =< 0 < ,r. Given  (tOo, 00)~  12 x S 1, define 

O(t) by (tOo, 0o)" t =-(too .t, O(t)). By solving equa t ion  E~ ,  we find (a) O(t)= 

tan-~(Oo+f'oB(too �9 s ) d s ) i f  0 o #  --- r r /2;  (b) O ( t ) - - - -  Ir /2 if 0o = ---,r/2. H e n c e  

the set ~ = 12 • [ - 7r/2, 7r/2] C 12 x S 1 is invariant .  T h e  flow (~, R) is the p rom-  

ised flow. No te  that ,  if 0 o #  •  and if f'oB(too. S ) - -*+~( -o~) ,  then 

(tOo, 0o)" t ~ 11 • {Tr/2}(f~ • { - 7r/2}). 

2.6. DEFINmONS. Let  b: R - - * R  be uni formly  b o u n d e d  and uni formly  con- 

t inuous with hull 12. Say b is minimal  if (12, R) is minimal .  

2.7. LEMMA. Let b: R--->R be minimal, and suppose f 'ob(s)ds is bounded as 

t-.-,oo or as t--~-oo.  Then there is a continuous G: 12---~R such that G(to �9 t ) -  

G(to)  = f'oB(ta �9 s)ds (to E 12; B is constructed as in 2.1). 

PROOF ([5], l e m m a  2.2 and [6] w Def ine  a flow on 12 x R as follows: 

(to, u ) .  t -- (to �9 t, u + f'o B (tO �9 s)ds) .  Also define T, : f~ • R--~ 12 x R: T, (tO, u ) = 

(tO, u + s). Let  tOo -- b E f~, and define K1C ~ x R to be  (a) the  tO-limit set ([9]) of 

the orbit  {(too,0)" t I t @ R} if g ( t )  = f'oB(too" s)ds is b o u n d e d  as t --, oo; (b) the 

a - l imi t  set of {(to0,0). t { t @ R} if g( t )  is b o u n d e d  as t --> - oo. Then  K1 is compac t  

and invariant ,  hence  conta ins  a n o n e m p t y  minimal  set K ([3]). Since 12 is 

minimal ,  the  projec t ion  of K to ~ is equal  to 12. Suppose  that,  for  some  to ~ 12, 

one  has (to, u~) and (tO, u l +  ~ ) E  K. By minimal i ty  of  K, one  has T ~ ( K ) =  K. 

H e n c e  T,~ ( K )  = K for  all in tegers  n ; hence  r = 0. It follows that  K covers  each 
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point of f l  exactly once. Define G(to)  to be the unique point of K O {to} x R; 

then G satisfies the conditions of 2.7. 

2.8. REMARK. If b is almost periodic, then 2.7 is Bohr's theorem ([4], 

theorem 5.2), since in that case (f~, R) is an almost-periodic minimal set ([3]), and 

f'o b(s)ds = f'oB(too, s)ds = G(too" t ) -  G(too); the last expression is an almost- 

periodic function of t. 

2.9. DEFINITIONS. Let X be compact metric, and let 2 • be the (compact) 

space of all closed subsets of X with the HausdortI metric ([1], def. 7.7). If Y is a 

topological space and ~0:Y--~2 x is a map, say that ~o is upper (lower) 

semi-continuous iff for each V open (closed) in X, {y E Y I~0(y)O V # O }  is 

open (closed) in Y. 

2.10. THEOREM. Let X and Y be compact metric, and let ~o : Y---~ X be an 

upper (lower) semi-continuous map. Then the set of continuity points of ~o is 
residual in Y. 

For a proof of 2.10, see ([1], theorem 7.10) (the proof applies also to upper 

semi-continuous maps). 

w Oscillation properties 

3.1. NOTATION. Let b: R--~R be a minimal function with hull (I'~,R). Let 

B : 11 ~ R and (E, R) be as in 2.1 and 2.5, respectively. We sometimes write g,o (t) 

for f'oB(to . s)ds (to E f t ) .  

3.2. ASSUMPTIONS. (1) There exists to~ E f l  and a sequence (t,) with It, l--* oo 

such that (1/t ,) f~B(to~. s)ds-->O as n- - .  oo. 

(2) There exists to2E fl  such that f'oB(to2, s)ds is unbounded. 

3.3. THEOREM. Let m be Lebesgue measure on R (with m.[0, 1] = 1). Let 

~'={toEflllim"l----m{tE[-n'n]lg~(t)EI}}=O~z.n 

for every compact I C R. Then fl~ is residual in f~. 

PROOF. Let 

Aj,~.N= c o ~ l l  ~---n m { t ~ [ - - n ,  n l l g ~ ( t ) E ( - k , k ) } > = l l i  for n>-- i 

If ~op--*~o, then g~p(t)---~g~(t) uniformly on compact subsets of R ;  hence 

clsAj.k,N C A~,k+~,N. It follows that l l - l l ~  = UT=~ U~=~ U~=~clsAj, k.N. 
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If the conclusion of 3.3 is false, then some  set Aj.k,N conta ins  an open  set 

V C l~ (j, k, N are now fixed). Since (12, R ) is minimal ,  there  exist t imes tl," �9 ", t, 

such that  f~ = V .  t, U .  �9 �9 U V .  t, (here V .  t - {to �9 t I to E V}). It follows easily 

that,  for  some  k0, one  has 

l m { t ~ [ _ n , n ] l g ~ ( t  )E(-ko,ko)}_->l/]  for  a l l n  > N  and all t oE l - l .  
2n = 

Now consider  g,o~(t), where  to2 is given in 3.2(2). A s s u m e  lim,~= g~( t )  = oo (it 

will be  clear  that  the o the r  possibili t ies may  be handled  similarly). Pick t imes 

T, < T2< "." < T2i such that  g~(T~)=  2iko (1_-< i - 2 j ) .  No te  that  

g,o2.T,(t) = B(to2" (T~ + s))ds = B(toz. s)ds = g~(T, + t ) -  g~(T,) .  

For  n -> N, one  has 

1 
2---ff m{t E [ -  n, n]lg~2r,(t ) ~ ( -  ko, ko)} _-> 1/]; 

hence,  if n > N, then g~(s) is in the open  interval  ((2i - 1)ko, (2i + 1)ko) for  a set 

S, C [T~ - n, T~ + n] satisfying (1/2n)m(S,)>= 1/]. 

Now choose  n > m a x ( N , 2 j .  T~j). Then  (1/2n)m(S, n [ -  n,n]) > 1/2j 

(1 =< i < 2]). Since 

2i 

[-n,n]~ U (s,n[-n,n])U{s~[-n,n]lg~(s)~(-ko, ko)}, 
i = l  

and since the sets on the right hand  side are pairwise disjoint,  we obtain  

1 = (1 /2n )m[ -  n, n] > (2])(1/2])+ 1/i > 1, a contradic t ion.  

3.4. DEFINmON. Let  f /2={ to  E f ~ l l ~ m , ~ g ~ ( t ) = o o ,  l i rn ,_~g,o( t )= -o% 

lim . . . . .  g~ (t)  = o% l im,_ ,  g~ (t) = - oo}. 

3.5. LEMMA ([12], p. 204, prob.  7). (1) There exists to~ ~ f l  and a real M such 

that g~(t) <= M ( - oo < t < oo). 

(2) There exists to, E f~ and a real M such that g~,(t) > M ( - oo < t < oo). 

PROOF. Cons ider  the l inear skew-produc t  flow (2.3) (1-/• R , R )  def ined as 

follows: (to, x ) - t  = (to �9 t,x~(t)), where  x,o(t) = x -exp[ f l ,  B( to  �9 s)ds]. By 2.4, 

any n u m b e r  of the fo rm l im,_~(1/ t , ) ln lx , ( t , ) l  is in the spec t rum (2.2) of 

(f~ x R, R), where  [ 1/t, I ~  oo. By 3.2(1), zero is in the spec t rum of ( f / •  R, R) so 

there  exists to3 E f~ such that  exp [ f~  B(to3" s)cls] is bounded .  This  p roves  (1). T o  

p rove  (2), replace  B by - B  in the above  a rgument .  
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Consider the flow (X,R) of 2.5; recall X = t ~ x  [-r Let K, = 

f l  x [ - rr/2 + 1/n, ~r/2] C X (n = 1, 2 , . . -  ). Let 

V, = {(to, 0) E X I (to, 0).  t E K. for all t => 0} 

I fo / = to, O)~1~, O+ B ( t o . s ) ~ t a n - l ( - ~ r / 2 + l / n ) f o r a l l t > - O  . 

Then V, is compact, and it is positively invariant (i.e., (to, 0)- t E V, whenever 

(to, 0) E V, and t => 0). Note 1~ x {~r/2} C V. for all n _-> 1. 

3.6. LEMMa. Let  

W,  = {to ~ a I there exists O, - ir /2 < 0 < ~r /2, with (to, O) E V,}.  

Then W,  is oJ: first category in l l .  

PROOF. Let Z ~ 2 l-'/2''m be the set of closed subsets of [ - Ir/2, rr/2] with the 

HausdodI metric (see 2.9). For fixed n, define ~0 : I~ - -~Z :w- -*V,N 

({w} x [ - 7r/2, ~'/2]). Then ~0 is lower semi-continuous (2.9), hence has a residual 

set of continuity points (2.10). Let o5 be a continuity point of q~. To prove 3.6, it is 

sufficient to prove that o3 I~ W,. 

So, suppose o5 E W,, and let (O5, 0o) E V,, - ~/2 < 0o < ~r/2. By continuity at 

o5, there exists a neighborhood ~ of o5 such that, for each to E (7, there exists 

0~ E ( -  ~r/2, rr/2) with (to, 0~)E V,. Since (I1, R) is minimal, there exist finitely 
many positive times t l , - " , t ,  such that ~ t . t l U . . . U G . t , = l ~ .  Since V, is 

positively invariant, it follows that, for every to ~ l ,  there exists 0~ E 

( -  7r/2, ~'/2) such that (to, 0~) ff V,. 

Now, from the definition of (I~, R) the last statement implies that, for each to, 

there exists M~ E R such that f ;B ( to3 -  s)ds  ~ M~ for all t ~ 0. But, by 3.5(1), 

there exists to3 and M such that f ' o B ( t o 3 . s ) d s N M  ( - ~ < t < ~ ) .  By 2.7, 

f 'oB( to ,  s)ds  is bounded on - ~ <  t < ~  for all to, contradicting 3.2(3). This 

completes the proof of 3.6. 

3.7. T~EOREM. Let  f~2 be as in 3.4. Then [12 is residual in II. 

PROOF. First let Wo = U~=~ W,, where W, is as in 3.6. Then 12~ Wo = 

{co E l I I l i m , ~ g ~ ( t )  = -oo}, and by 3.6, I I ~  W, is residual in II. 

Replace K, by fl x [ - zr/2, rr/2 - 1/n] (n = 1, 2 , . . .  ) in the proof of 3.6. One 

concludes that {oJ ~ III l-i-mm,~= g~ (t) = oo} is residual in II. Replacing " t  => 0" by 

"t  N 0" in the definition of V., and proceeding as above, one also shows that 

{w E f l  I ~ . . . .  g~ (t) = oo and lira . . . .  g,~ (t) = - oo} is residual in ~.  This com- 
pletes the proof. 
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Combining 3.3 and 3.7, we obtain 

3.8. THEOREM. 120 = 12~ O 122 is residual in 12. 

3.9. REMARKS. (1) If b: R--~R is an almost periodic function with mean 

value zero and unbounded integral, then 3.2(1) and 3.2(2) are satisfied. Also, the 

hull of b is minimal (in fact, minimal and almost periodic ([3])). 

(2) In ([7]), it is shown (using an example of ([8])) that there exist almost 

periodic functions b with mean value zero and unbounded integral such that 

l i m , ~  (1/2n)m {t E [ - n, n] I f'o b(s) E I} exists and is positive for some compact 

I. On the other hand, it is also shown in [7] that there exist almost periodic 

functions b with mean value zero such that limn~| )m {t E [ - n, n ] l g, (t ) E 

I} = 0 for all to, I. 

(3) Let 12 be compact metric, T: 12-~ f~ a homeomorphism, and suppose the 

integer flow (~, T) is minimal. Let B:  12--~R be continuous. Define a 

homeomorphism 1 ~ of ~ = f~ x [ - 7r/2, 7r/2] as follows: T(to, O) = 

(T(to) ,O+B(to)) .  For positive integers k, define g,(k)=E~S_~B(T'(to)); for 

negative k, define g~ ( k ) =  X~_s~ B(T-'( to)).  Then all methods used above apply 

with " k "  in place of " t "  and "g ,  (k)" in place of "g ,  (t)". We conclude that one 

of the following holds: either (a) the sums E~_s~ B (T' (to)) and E~-~ B (T-'  (to)) are 

bounded, uniformly in k and to (2.7), or (b) there is a residual set 12o C f~ such 

that to E 12o implies (i) lim,~| (1/2 n) card {k E [ - n, n ] I g- (k) ~ I} = 0 for all 

compact I C R, and (ii) g,  (k) oscillates in the sense of 3.4 (i.e., l imk~ g,~ (k) = 0% 

etc.). 

04. Time averages 

4.1. NOTATION. We retain the notation of 3.1. Let E(12) be the set of 

(Radon) probability measures on f~ which are ergodic ([9]) with respect to the 

flow (12, R). 

The following is well-known (see, e.g., [10]). 

4.2. THEOREM. Let M(12) be the compact convex set of (Radon) probability 

measures on II which are invariant with respect to (12, R). Then M (f~) is the closed 

convex hull of E(f~). 

Let B:  12--*R be as in 3.1 (note that any continuous function B on 12 is 

" induced" by a function b: R---*R; simply define b(t)=-B(too. t )  for some 

too ~ 12). 
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4.3. THEOREM. (1) Suppose that, for some fixed bo E R, f n B (to )dtz (to) = bo for 
all tz E E(f~). Then 

i lim 1 B(to �9 s)ds = bo for all to E a .  
,~+-~ t 

b, = fn B (to)dtz,(to) ~ fn B (to)dtz z(to) = b2 for tz,, ~ ~ E (l~). (2) Suppose 
Then 

and 

- - 1  ' fo' l im-  ~ B( to .  s ) d s / l i m  -1 B(to .s)ds 
, ~ t ) o  , ~ t  

t t 

--li_m tlf0 B(to" s )ds~  ,x---~lim l_t fo B( to .  s)ds 

for a residual set o[ to E IL 

PROOF. (1) We use the method of ([9], p. 494). Suppose there is a sequence 
(t.) with It, I--->oo and a point to0E s such that 

lix_.~m ~ 1 fo'. e(too . s)ds # bo. 

We may choose a subsequence (r,) of (t,) such that 

1 
l "  F(too" s)ds - 12(F) lira 

r t ~  rn  Jo 

exists for all continuous functions F: II---~R; moreover, the map F--+#(F)  
defines (using the Riesz theorem) an invariant measure /Z on 1) (see [9], pp. 

494--495). Then fnB(to)dl~( to)# bo. However, by 4.2 and our assumption on b, 
fnB(to)dli( to)  must equal bo. This contradiction proves (1). 

(2) Consider the functions B~(to) = B ( t o ) -  bl and B2(to) = B(to) - b2. Clearly 

3.2(1) holds for B~ and B2. If 3.2(2) did not hold for, say, B~, then 2.7 would 

imply that foB(to �9 s)ds = bit + G~(to �9 t ) -  Gl(to), where G~: l a i r  is continu- 

ous. But the Birkhoff ergodic theorem ([9]) implies that, for/z2-a.a, to, 

f,l~lim -[ B(to �9 s)ds = b~. 

This contradicts the previous statement. So 3.2(1) and 3.2(2) hold for B1 and B2. 

Now apply 3.7 to B~ and B2; one obtains a residual 113 C ~ such that, if to E 113, 
(i) there is a sequence ( t . ) ~  with f~B~( to . s )ds=O (which implies 
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f~B(to .s)ds = bl . t , ) ;  (ii) there  is a sequence  (t,,)---~ 0o with f~B(to .s)ds = 
b2- t,.. Also, there  are analogous sequences  (t')---~ - ~, (t')---~ - ~. Each  tO ~ ~'~3 
satisfies the condit ions of 4.3(2). 

4.4. REMARKS. (1) T h e o r e m  4.3 states that,  if (1), R) is minimal,  and if some 

time average ( I / t )  f~ B (tOo. s)ds diverges as t ~ ~ (or as t ~ - o0), then the t ime 

averages diverge for a residual set of tO ~ fL 

(2) As in 3.9(3), we can replace integrals by sums if a minimal discrete flow 

(fl, T)  is given. We may interpret  4.3 as follows: if the C6saro sums 

(1/k) E~g_d B (T '  (to)) diverge at a single point,  they diverge on a residual set; the 

E,=o B ( T - ' ( t o ) ) .  same s ta tement  holds for  ( l / k )  k - ,  
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